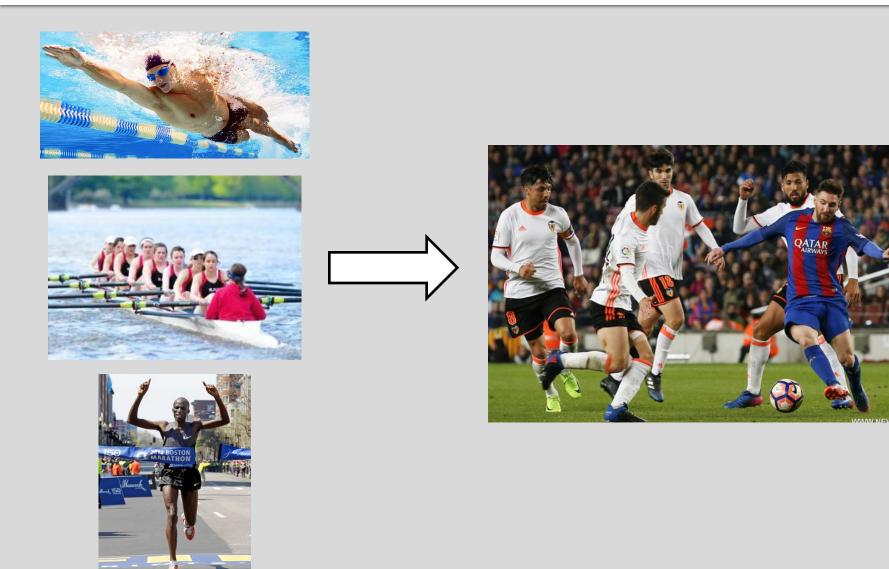

TEAM SPORTS CONDITIONING OWNER'S MANUAL


STRENGTH/POWER VS. CONDITIONING

ENDURANCE SPORTS VS. TEAM SPORTS

OVERVIEW – 4 "P's"

I. <u>PHILOSOPHY</u> II. <u>PRINCIPLES & PROGRESSIONS</u> III. <u>PERIODIZATION</u>

#1 - IDENTIFICATION

*We identify specific <u>metabolic qualities</u> and use <u>volume/intensity guidelines</u> to target those during fitness training

#2- AEROBIC DEVELOPMENT

*We place a heavy emphasis on <u>fully</u> developing the capacity of the aerobic system

ENERGY SYSTEM RELATIVE CONTRIBUTION:

Table II. Estimates of anaerobic and aerobic energy contribution during selected periods of maximal exercise

Duration of exhaustive	% Anaerobic	% Aerobic					
exercise (sec)							
0-10	94	6					
0-15	88	12					
0-20	82	18					
0-30	73	27					
0-45	63	37					
0-60	55	45					
0-75	49	51					
0-90	44	56					
0-120	37	63					
0-180	27	73					
0-240	21	79					

Gastin, P.B. Energy system interaction and relative contribution during maximal exercise. Sports Med. 31 (10): 725-741. 2001.

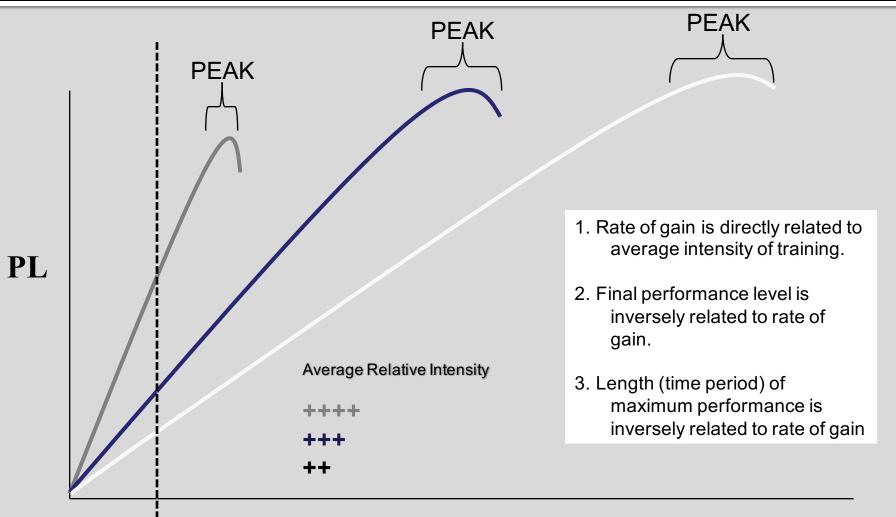
CENTRAL VS. PERIPHERAL

Oxygen transport/delivery

*Responds best to intensity *Adaptation occurs in 4-6 weeks

- Stroke Volume
- Myocardial Contractility
- Autonomic Regulation
 - Pulmonary Diffusion
 - Blood Volume
 - Hemoglobin Affinity

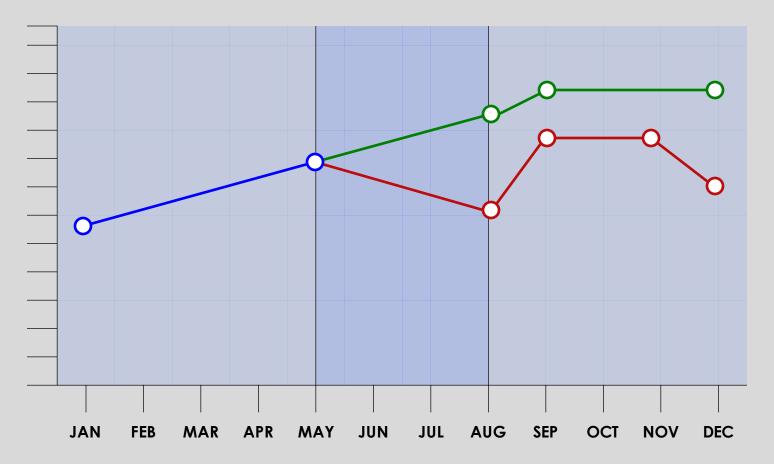
Oxygen utilization/efficiency


*Responds best to volume *Adaptation occurs within 4-6 months

- Oxidative Enzymes
- Mitochondrial Density
- Mitochondrial Enzymes
 - Capillary Density
- Muscle Glycogen Stores
 - Myoglobin

"...Central circulatory performance (stroke volume, cardiac output, myocardial contractility, etc.) might respond (and saturate) rapidly to increases in training intensity, whereas changes in skeletal muscle adaptations (mitochondrial volume, capillary density, aerobic enzyme production, etc.) may take weeks or months to saturate.

"...From the perspective of adaptation induction, substantial volumes of lowintensity training coupled with small volumes of high-intensity training may provide an effective combination of stimuli for both peripheral and central adaptation."

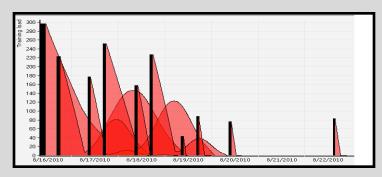

THEORETICAL RATES OF ADAPATION

TIME

THEORETICAL RATES OF ADAPATION

IN-SEASON FITNESS TREND: FIT vs. UNFIT

How do we handle unfit players during pre-season?

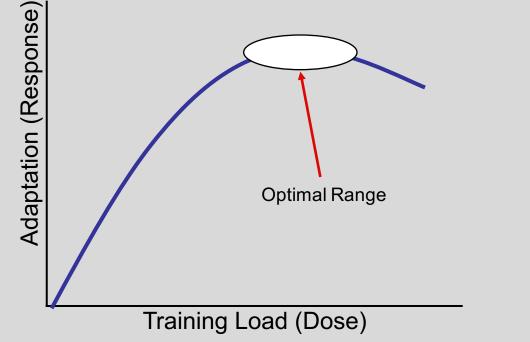

UNFIT PLAYERS:

Experience highest daily training loads

Will be under-recovered from practice sessions

INCREASED RISK OF INJURY AND OVERTRAINING!

How do we handle unfit players during pre-season?


- ✓ EXTRA HIGH-INTENSITY CONDITIONING IS NOT THE ANSWER!!!
- 1. Supplement Aerobic Threshold (A-1) bike workouts to safely increase aerobic capacity
- 2. Supplement high-intensity interval training as long as it is a substitute for practice minutes
- 3. Limit minutes during pre-season and early-season games

#3 - MINIMUM EFFECTIVE DOSE

* the minimum amount of volume necessary to achieve desired adaptation

"Studying dose response, and developing dose response models, is central to determining 'safe' and 'hazardous' levels and dosages for drugs, potential pollutants, and other substances"

*Basic and Clinical Pharmacology, 12th Ed., B. Katzung

Is this always the goal???

PART II.

PRINCIPLES & PROGRESSIONS

TRAINING LEVELS

Terminology?

Aerobic Overload General Endurance Power Endurance AEROBIC BASE Lactic Intervals **Aerobic Strength Cardiac Power**

LACTATE PRODUCTION

LACTATE TOLERANCE

VO₂ MAX

LACTATE THRESHOLD

AEROBIC THRESHOLD

TRAINING LEVELS

PURE SPEED

SUSTAINED SPEED

1-6sec

6-20sec

LACTATE PRODUCTION

LACTATE TOLERANCE

VO₂ MAX

LACTATE THRESHOLD

AEROBIC THRESHOLD

TRAINING LEVELS

GAUGING TRAINING INTENSITY:

Heart Rate (% of Max)

Velocity (vVO₂ or Peak Velocity)

Rating of Perceived Exertion (RPE)

RATING OF PERCEIVED EXERTION (RPE)

- 6 No exertion at all
- 7 Extremely light8

14

16

- 9 Very light *No effort required to speak
 10
- 11Light*Can carry on a conversation12
- 13 Somewhat hard *Can speak in sentences
- 15 Hard *Can speak a sentence
- 17 Very hard *Can speak a phrase
- 18
 19 Extremely hard *Can
 20 Maximal exertion *Can
 - *Can speak a word *Can't speak

TRAINING LEVELS – Defined

The work rate/intensity at which:

LACTATE PRODUCTION

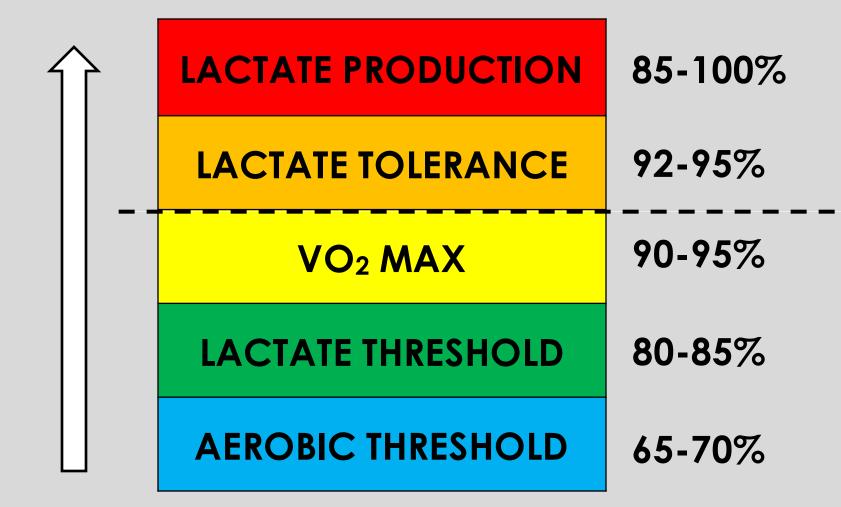
LACTATE TOLERANCE

VO₂ MAX

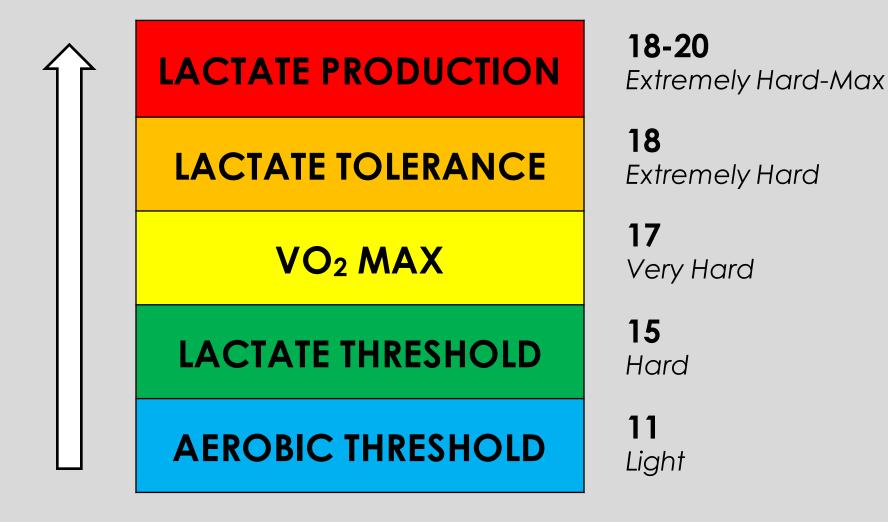
LACTATE THRESHOLD

AEROBIC THRESHOLD

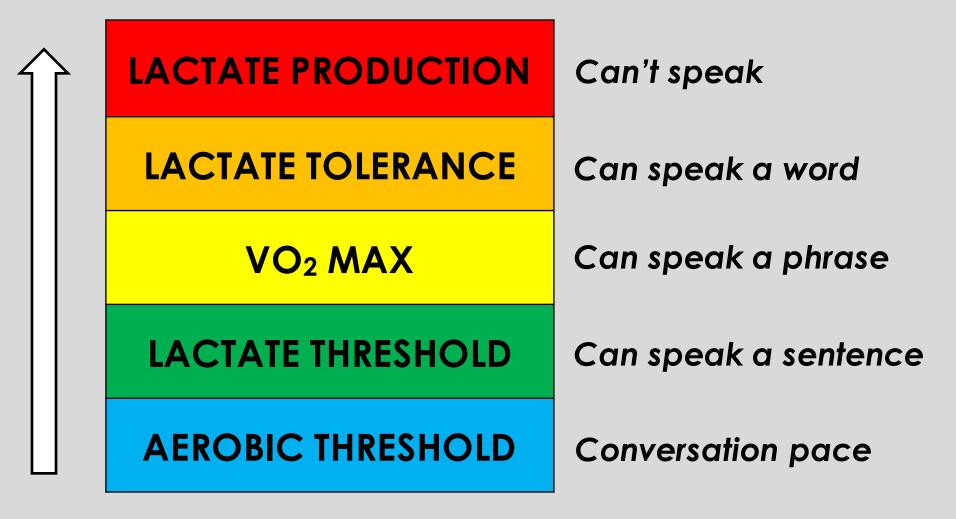
Peak lactates are achieved

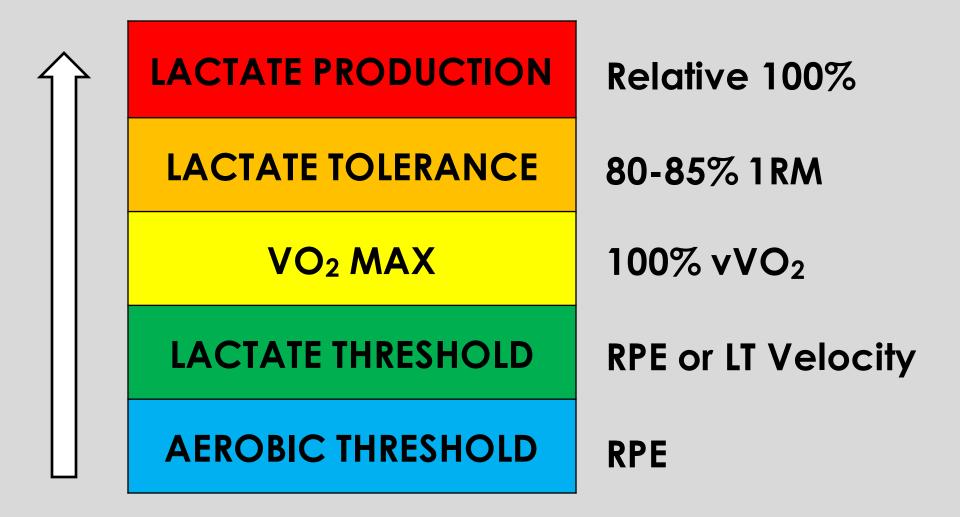

High lactate levels can be sustained

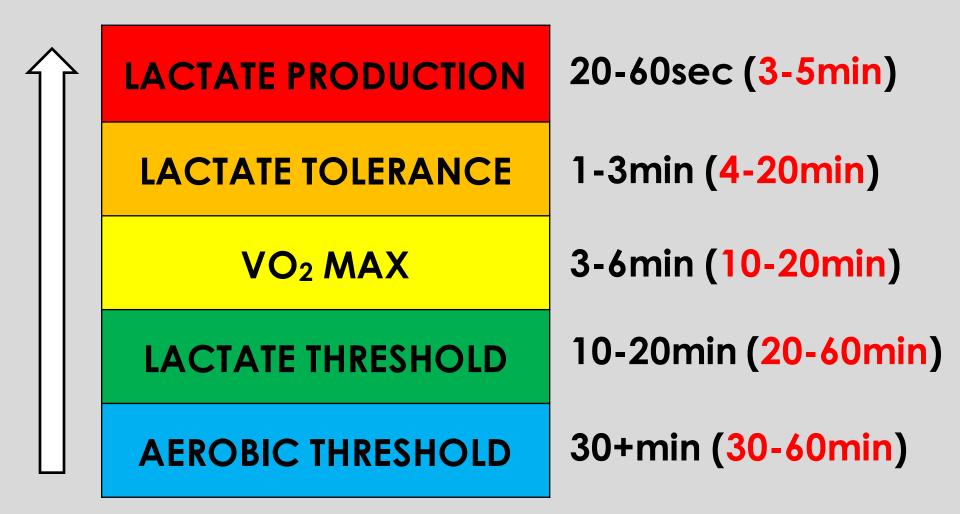
Maximal Oxygen Uptake

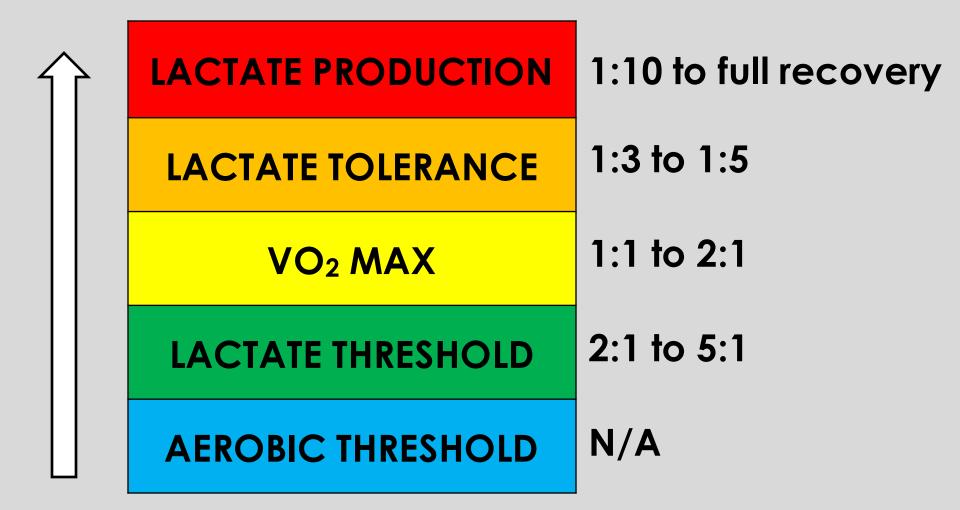

Muscle lactate production exceeds removal rate

1mmol lactate over resting


TRAINING LEVELS – % HR Max


TRAINING LEVELS - RPE


TRAINING LEVELS – BREATHING


TRAINING LEVELS – VELOCITY

TRAINING LEVELS – DURATION

TRAINING LEVELS – WORK:REST

AEROBIC THRESHOLD

PROGRESSION

✓ 1-2 Sets of 30-90min

✓ At least 30min total work volume

LACTATE THRESHOLD

PROGRESSION

LOW VOLUME	HIGH VOLUME
2x10:00	3x10:00
2x12:00	3x12:00
2x15:00	3x15:00
2x18:00	3x18:00
2x20:00	3x20:00

✓ 2-3 sets of 10-20min

✓ Between 20-60min of total work volume

VO₂ MAX

PROGRESSIONS – LONG INTERVALS

3:00 INTERVAL	4:00 INTERVAL			
3x3:00	3x4:00			
4x3:00	4x4:00			
5x3:00	5x4:00			
6x3:00	6x4:00			
5:00 INTERVAL	6:00 INTERVAL			
3x5:00	2x6:00			
4x5:00	3x6:00			
5x5:00	4x6:00			
6x5:00	5x6:00			

✓ 3-6 Sets of 3-6min w/1:1 to 3:1 work:rest
✓ Between 10-20min of total work volume

VO₂ MAX

PROGRESSIONS – SHORT INTERVALS

✓ 1-2 Sets of 6-20min of 30/30 or 60/60
✓ Between 10-20min of total work volume

LACTATE TOLERANCE

PROGRESSION

✓ 3-10 sets of 1-3min

Low volume: 4 x (1min/3min) @ 85% High volume: 10 x (1min/1min) @ 80% 1min = 400m

Low volume: 2 x (3min/3min) @ 85% High volume: 6 x (3min/1min) @ 80% 3min = 800m

SCORING TABLES – 400m ex.

TIME	POINTS								
50.0	767	1:01	538	1:22	339	1:43	222	2:04	145
50.5	747	1:02	525	1:23	332	1:44	218	2:05	142
51.0	729	1:03	513	1:24	325	1:45	213	2:06	139
51.5	713	1:04	501	1:25	319	1:46	209	2:07	136
52.0	699	1:05	490	1:26	312	1:47	205	2:08	133
52.5	685	1:06	478	1:27	306	1:48	201	2:09	130
53.0	673	1:07	468	1:28	300	1:49	197	2:10	127
53.5	661	1:08	457	1:29	294	1:50	193	2:11	124
54.0	651	1:09	447	1:30	288	1:51	189	2:12	122
54.5	640	1:10	437	1:31	282	1:52	185	2:13	119
55.0	631	1:11	428	1:32	277	1:53	182	2:14	116
55.5	622	1:12	419	1:33	271	1:54	178	2:15	114
56.0	613	1:13	410	1:34	266	1:55	174	2:16	111
56.5	604	1:14	401	1:35	260	1:56	171	2:17	109
57.0	596	1:15	393	1:36	255	1:57	167	2:18	106
57.5	588	1:16	384	1:37	250	1:58	164	2:19	104
58.0	580	1:17	376	1:38	245	1:59	161	2:20	101
58.5	573	1:18	368	1:39	240	2:00	157	2:21	99
59.0	566	1:19	361	1:40	236	2:01	154	2:22	97
59.5	559	1:20	353	1:41	231	2:02	151	2:23	94
1:00	552	1:21	346	1:42	226	2:03	148	2:24	92

PACING TABLES – 400m ex.

Percent Performance	Reps	Rest	100m	150m	200m	250m	300m	350m	400m
100.0%	0-1		14.9	22.7	30.9	40.3	50.5	1:01.8	1:14.1
95.0%	1-2	5-7min	15.7	23.9	32.5	42.4	53.2	1:05.0	1:18.0
90.0%	2-3	4-5min	16.5	25.3	34.3	44.7	56.1	1:08.6	1:22.4
85.0%	4-5	3-4min	17.5	26.7	36.3	47.4	59.4	1:12.7	1:27.2
82.5%	6-7	2-3min	18.0	27.6	37.4	48.8	1:01.2	1:14.9	1:29.8
80.0%	8-9	1-2min	18.6	28.4	38.6	50.3	1:03.2	1:17.2	1:32.7
77.5%	10-12	1-2min	19.2	29.3	39.8	52.0	1:05.2	1:19.7	1:35.6
75.0%	13-15	1-2min	19.8	30.3	41.2	53.7	1:07.4	1:22.3	1:38.8
72.5%	16-18	.5-1min	20.5	31.4	42.6	55.5	1:09.7	1:25.2	1:42.2
70.0%	19-21	.5-1min	21.3	32.5	44.1	57.5	1:12.2	1:28.2	1:45.9

Percent Performance	Reps	Rest	500m	600m	800m	1000m	1200m	1500m	Mile
100.0%	0-1		1:36	1:59	2:50	3:36	4:25	5:42	6:09
95.0%	1-2	5-7min	1:41	2:05	2:59	3:48	4:39	6:00	6:29
90.0%	2-3	4-5min	1:46	2:12	3:08	4:00	4:54	6:20	6:50
85.0%	4-5	3-4min	1:53	2:20	3:20	4:15	5:12	6:42	7:14
82.5%	6-7	2-3min	1:56	2:24	3:26	4:22	5:21	6:54	7:27
80.0%	8-9	1-2min	2:00	2:28	3:32	4:30	5:31	7:07	7:41
77.5%	10-12	1-2min	2:03	2:33	3:39	4:39	5:42	7:21	7:56
75.0%	13-15	1-2min	2:08	2:38	3:46	4:48	5:53	7:36	8:12
72.5%	16-18	.5-1min	2:12	2:44	3:54	4:58	6:06	7:52	8:29
70.0%	19-21	.5-1min	2:17	2:50	4:02	5:09	6:19	8:08	8:47

LACTATE PRODUCTION

All efforts should be performed at:

- a. Maximal or near-maximal velocity for the assigned distance
- b. 90%+ of 1RM (peak) velocity
- c. RPE of 19-20
- d. Blood lactate level range of 10-20mmol
- * Heart rate may range from 85-100%

LACTATE PRODUCTION

EXAMPLES

a. 200m Sprints (2-3 sets of 3-6 reps)

- b. Bike Sprints (high gear x 20-60s efforts)
- c. Sled Push/Pull/Drag (20-60s efforts)
- d. Hill Sprints (20-60s efforts)

✓ Between 3-5min of total work volume

PART III.

PERIODIZATION

1. Start backwards.

✓ Know the end goal ✓ Sport/positional needs analysis

*Science of Running, Steve Magness

Work the extremes.
 Bring it together.

- ✓ Technique/speed development
 ✓ Aerobic threshold
- Fartlek (intermix intensities)..build toward game volumes

*Science of Running, Steve Magness

4. Never leave anything behind.

- ✓ "Build and maintain"
- Avoid neglect for extended periods of time
- Everything is included, emphasis changes

5. Progress everything.

 ✓ Progressive overload
 ✓ Volume, speed, decreased recovery, distance, pre-fatigue

*Science of Running, Steve Magness

OFF-SEASON PERIODIZATION: 3-DAY/WEEK

FALL SPORT	AEROBIC THRESHOLD	LACTATE THRESHOLD	VO2 MAX	LACTATE TOLERANCE	LACTATE PRODUCTION
PHASE 1 (DEC): 4-6 WEEKS	2	1			
PHASE 2 (JAN): 4-6 WEEKS	1	2			
PHASE 3 (FEB): 4-6 WEEKS		2	1		
PHASE 4 (MARCH): 4-6 WEEKS		1	1	1	
PHASE 5 (APRIL): 4-6 WEEKS			1	1	1
PHASE 6 (MAY): 4-6 WEEKS	1	1	1		
PHASE 7 (JUNE): 4-6 WEEKS		1	2		
PHASE 8 (JULY): 4-6 WEEKS			1	2	

OFF-SEASON PERIODIZATION: 4 DAY/WEEK

FALL SPORT	AEROBIC THRESHOLD	LACTATE THRESHOLD	VO2 MAX	LACTATE TOLERANCE	LACTATE PRODUCTION
PHASE 1 (DEC): 4-6 WEEKS	3	1			
PHASE 2 (JAN): 4-6 WEEKS	2	2			
PHASE 3 (FEB): 4-6 WEEKS	1	2	1		
PHASE 4 (MARCH): 4-6 WEEKS		1	2	1	
PHASE 5 (APRIL): 4-6 WEEKS		1	1	1	1
PHASE 6 (MAY): 4-6 WEEKS	1	2	1		
PHASE 7 (JUNE): 4-6 WEEKS		1	2	1	
PHASE 8 (JULY): 4-6 WEEKS		1	1	2	

THANK YOU!

- CSCCa
- Louisville Sports Performance Staff
- Attendees

Contact Information: jasond@gocards.com www.gocards.com/sportsperformance

PART IV.

PROFILING

TESTING PHILOSOPHY

WHY DO WE TEST & HOW DO WE CHOOSE OUR TESTS?

OLD MODEL

- One finishing time or score
- Pass/Fail (according to generic team standards)
- Historically popular/common tests (i.e. mile run)

NEW MODEL

- Obtain meaningful data (heart rate, velocity, recovery %'s)
- Use results to plan individual training intensities
- Measure physiological capacities
- Profile individual strengths and weaknesses

TYPES OF TESTS

METABOLIC QUALITIES TO BE IDENTIFIED:

- POWER: The rate at which energy can be turned over
 CAPACITY: The total amount of energy that can be turned over
- ANAEROBIC POWER
- ANAEROBIC CAPACITY
- AEROBIC POWER
- AEROBIC CAPACITY

ANAEROBIC POWER

- DEFINITION: The highest power output produced between 1-5 seconds
- PARAMETERS
 - 1-Repetition Maximal Effort
 - <:05 Seconds</p>
 - Measured in Watts (W)
- TESTS
- Vertical Jump (Harman equation)
- Peak Power (W) = 61.9 x Jump Ht. (cm) + 36.0 x BW (kg) + 1,822
- 35-Meter Sprint
- Peak Power (W) = BW (kg) x Distance² / Time³
- Wingate Test (peak power taken from first :05 seconds)
- Peak Power (W) = (RPM x 1.615m) x (Resistance (kg) x 9.8)

ANAEROBIC CAPACITY

- DEFINITION: The highest power output produced between 30-60 seconds
- PARAMETERS
 - 30-60 Second Maximal Effort
 - Sport-Specific: Running, Cycling, Rowing, etc.
 - Repeated Efforts (w/minimal rest)
 - Measure Peak & Average Power (watts per kg)
 - Measure Fatigue Index (loss of power in watts/sec)
- TESTS
- Running-Based Anaerobic Sprint Test (RAST)
 - 6 x 35-meter sprint
 - 10 second rest between reps
- Bosco Repeated Jump Test
 - 60 continuous maximal jumps (Jump Mat)

AEROBIC POWER: VELOCITY AT VO₂ MAX (vVO₂)

DEFINITION: The maximal velocity (power) sustained for 5-6 minutes

- Takes into account both VO₂ max and running economy
- More correlated with performance than VO₂ max alone
- Most important value in prescribing training intensities
- Also known as Maximal Aerobic Speed or Maximal Aerobic Velocity
- Average athlete can maintain VO₂ max for 6-minutes (Billat, 1991)

6-Minute Test:

- Cover maximum distance in 6-minutes
- Distance covered/6-minutes = vVO_2 max

AEROBIC CAPACITY (VO₂ MAX)

DEFINITION: The highest amount of oxygen a person can consume (per unit time & bodyweight)

• PARAMETERS

- 12-15:00-Minutes
- Incremental Exercise Intensity
- Maximum Heart Rate

• TESTS

- 20-Meter Multistage Shuttle Run (Beep Test) (Leger and Lambert 1982; Ramsbottom et.al. 1987)
- 30-15 Intermittent Fitness Test (IFT)
- 3000-Meter Run (Daniels, 1984)

TESTING CONSIDERATIONS

FACTORS AFFECTING PERFORMANCE:

- MOTIVATION
- ENVIRONMENTAL CONDITIONS
- TESTING SURFACE
- READINESS (SLEEP/NUTRITION/RECOVERY)
- TESTING ORDER