How, when, and why to implement popular training methods for sport performance

Dr. Anna Swisher Eleiko Education

Olympic lifting complex

Combination of oly lifts and derivatives combined in one set

	Power or (Po	utput of va ower = force	a rious ex (x velocity)
Lift (max effort)	Time to complete	Bar velocity	Power
Bench	~1-5 sec	~0.6 m/s	~300 W
Deadlift	~1-10 sec	~0.5 m/s	~1300 W
Back squat	~1-5 sec	~0.5 m/s	~1300 W
2 nd pull snatch or clean	~ 100-200 ms	~1.6 m/s	~4000 W

arhammer, 1980; Garhammer, 1981; Garhammer, 1984; Garhammer, 1993; Stone et al., 2007

Who benefits from olympic complexes

- Athletes in GPP
 - Reinforce technique and work capacity
- Beginner lifters and youth athletes
 - Lots of reps with light weights
 - Learn proper movement patterns
- Intermediate and advanced athletes and lifters
 - Strengthen technique
 - Improve weaker portions of lifts
 - Fun, change of pace

ELEIKO

What causes muscle hypertrophy?

- How do we optimally stimulate a muscle to hypertrophy (myofibrillar) ?
 - Key to assessing training methods
 - Tension, damage, metabolic stress (H+)
 Myostatin, anabolic steroids, hormones

Stone et al., 2007; Schoenfeld 2010, 2013

What kind of hypertrophy? Training goal?

- Can increase size without strength/power (non-functional)
- Can hypertrophy aspect of a muscle that is not relevant to performance
 - Curls with various hand orientations
 - Added mass takes more effort/force to move
- Athletes develop movements not muscles
 - Goal is for new muscle to add to strength and power production capacity in SPORT

ELEIKO

Multiple pathways to muscle growth What is optimal for sport?

- Careful when training focus is TUT with lower loads
 - What causes high tension?
- Tension causes molecular and cellular responses
 - Increased satellite cell incorporation
 - Results in a cascade leading to muscle protein synthesis
- Isometrics
 - Do planks get you HUGE?

Stone et al., 2007

Training to technical failure

ELEIKO

Potential rationale for lifting to failure

- If smaller MUs are fatigued at end of a set, then larger MUs must help
- 2. Increase in H+ with failure is a stimulus for hypertrophy
- 3. Potential for a greater training stimulus

What is problematic about training to failure

- 1. Increased time to recover (Morán-Navarro et al., 2017)
 - Training vs. exercising
- 2. Much harder to manage volume of training
 - Difficult to follow progressive overload
 - Overtraining and injury risk higher
- 3. Negative hormonal alterations (T:C and IGF-1) impede muscle growth (Izquierdo et al., 2006)

It's called lunch

ELEIKO

Lifting to failure

- Training to failure is *not necessary* to induce hypertrophy or activate higher threshold MUs(Frobrose et al., 1993, Stone et al., 1996)
 - · Better stimulated by higher volume loads for athletes
 - Ballistic exercise also ↑ recruitment of higher threshold MUs
- Lacking evidence that in **trained individuals**, it is better than simply training hard (Izquierdo et al., 2006; Stone et al., 2007, Peterson et al., 2005; Schoenfeld 2013)

Who benefits from training to technical failure? General population with no training No large-muscle mass or technical lifts (curls....) Central fatigue and time for recovery non-issue Lower overall work; less impact on remainder of workout Who should avoid training to technical failure most of the time? Athletes

ELEIKO

Occluded strength training

- Why do it?
- Benefits?
- Mechanisms?

Occluded strength training

(AKA Kaatsu or blood flow restriction training)

- What is it?
 - Using elastic bands to occlude venous blood flow; slower tempo to extend eccentric
 - Can be done for arm and leg work; most common for squats
- Likely mechanisms
 - Increase in concentration of metabolites and delay in transport
 - Stimulus for hypertrophy

Pearson and Hussain, 2015; Abe et al, 2012, Pope et al., 2013

Occluded strength training

PRO	CON	
Increased metabolic stress (novel stimulus)	Body adapts quickly (within weeks)	
Highly fatiguing (3-8 sets of 10-20 reps @ ~30RM (<40% 1RM)	Low loading must be used (lower tension created)	
Potential for high levels of damage	Tough to get pressure levels correct with wraps (venous return only impacted)	

Occluded strength training Loading is a key factor Squat with high load + longer eccentric = more damage and metabolites but lower overall volume Squat with low load = minimal damage, more volume, more metabolic stress; won't effectively stimulate hypertrophy (Scott et al., 2016) Why not just do more heavy squats?

Bottom line: Occluded strength training for athletes Occlusion training is less effective than conventional training over a period of months and years Athletes should do heavier training, which is a better stimulus for hypertrophy

- Eccentric overloaded squats better for similar fatigue aftereffects
- Is there any application in sport for it?....

ELEIKO

Eccentric overloaded lifts

- What is it?
- Why do it?
- Benefits?

Why do it?

- Highly effective variation as a hypertrophy stimulus
 - Higher tension from higher loading
 - Greater damage from greater loading

Eccentric overloaded lifts

- Types of athletes who benefit most?
 - Age 18 or older with training age of >2 years
 - Compete in sport that needs high levels of absolute strength
- When to use it?
 - GPP or off-season when focus is hypertrophy and sport training volume is low
- What lifts to use?
 - Most effective for squats, bench, deadlifts

Acknowledgements (No one gets anywhere alone)

- Eleiko Sport
- Professors Bill Sands and Mike Stone
- Coaches Mike Gattone, Roger Neilsen, Larry Meadors, Shawn Schleizer, Angela Sorensen, and Meg Stone
- All my athletes for trusting me to help them reach their goals
- Dr. Stiggins and CSCCa for including me in this wonderful event

ELEIKO

Questions?

CANYOUSENDANAMBUVANCEPLEASE

Please feel free to contact me anna.swisher@eleiko.com IG: coachswisher WEB: eleiko.com