












| Phase                       |         |         | G       | PP        |         |           | Suprama   | x Strength | Aerobic   | иргата:   | Strength  | Aerobio    | Triphasio  | Strength   | Aerobic    | Triphasi | ic Power | Aerobic   | Triphasi | c Spee  |
|-----------------------------|---------|---------|---------|-----------|---------|-----------|-----------|------------|-----------|-----------|-----------|------------|------------|------------|------------|----------|----------|-----------|----------|---------|
| Weeks                       | 1       | 2       | 3       | 4         | 5       | 6         | 7         | 8          | 9         | 10        | 11        | 12         | 13         | 14         | 15         | 16       | 17       | 18.       | 19       | 20      |
| Quality Addressed           | Aerobic | Aerobic | Lactate | Lactate   | Alactic | Afactic   | Eccentric | Eccentric  | Download  | Isometric | Isometric | Download   | Concentric | Concentric | Download   | Power    | Power    | Deveload  | Peaking  | Peaking |
| Percent Load                | Belov   | 50%     | 50-     | 75%       | Abov    | e 80%     | 120-      | 105%       | Below 50% | 120-      | 105%      | Balon Str. | Abov       | e 80%      | Below Str. | Belov    | # 80%    | Balan Str | Belov    | 155%    |
| Durations                   |         |         | over 10 | sec. sets | under 1 | Sec. sets | 20-301    | iec. sets  |           | 20-30 s   | ec. sets  |            | under 10   | sec. sets  |            | under 1  | nec nep  |           | under 10 | sec. s  |
|                             |         |         |         |           |         |           |           |            | Add Ons   |           |           |            |            |            |            |          |          |           |          |         |
| Fasted State                |         |         |         |           |         |           |           |            |           |           |           |            |            |            |            |          |          |           |          |         |
| Tape Mouth                  |         |         |         |           | KSZUMUM |           |           |            |           |           |           |            |            |            |            |          |          |           |          |         |
| Fast Twitch RSA Capacity    |         |         |         |           |         |           |           |            |           |           |           |            |            |            |            |          |          |           |          |         |
| Fast Twitch RSA Hypertrophy |         |         |         |           |         |           |           |            |           |           |           |            |            |            |            |          |          |           |          |         |
| Potentiation Clusters       |         |         |         |           |         |           |           |            |           |           |           |            |            |            |            | 100000   |          |           |          |         |
| French Contrast             |         |         |         |           |         |           |           |            |           |           |           |            |            |            |            |          |          |           |          |         |
| typerlinks for Examples     | Aer     | obic    | Lac     | tate      | Ala     | etic      | Supran    | nax-Eco    | ex        | Supran    | nax-Iso   | Contra,    | Conc       | entric     | Contra.    | Po       | wer      | Contra.   | Spe      | eed     |

| Phase                       | G         | SPP     | Supramax Strengtl Supramax Strengt |           |           | k Strengti  | Triphasi | c Power     | Triphasic Speed/Peaking Can Last 4-6 wk |         |         |         |  |  |
|-----------------------------|-----------|---------|------------------------------------|-----------|-----------|-------------|----------|-------------|-----------------------------------------|---------|---------|---------|--|--|
| Weeks                       | -1        | 2       | 3                                  | 4         | 5         | 6           | 7        | 8           | 9                                       | 10      | 11      | 1:      |  |  |
| Quality Addressed           | Aerobic   | Aerobic | Eccentric                          | Eccentric | Isometric | Isometric   | Power    | Power       | Peaking                                 | Peaking | Peaking | Pasking |  |  |
| Percent Load                | Below 50% |         | 120-                               | 105%      | 120-      | 105%        | Belov    | w 80%       |                                         | Below   | 55%     |         |  |  |
| Durations                   |           |         | 20-30 1                            | sec. sets | under 10  | 0 sec. sets | under 10 | ) sec. sets | under 10 sec. sets                      |         |         |         |  |  |
| Fasted State                |           |         |                                    |           |           |             |          |             |                                         |         |         | Ĺ       |  |  |
| Tape Mouth                  |           |         |                                    |           |           |             |          |             |                                         |         |         |         |  |  |
| Fast Twitch RSA Capacity    |           |         |                                    |           |           |             |          |             |                                         |         |         |         |  |  |
| Fast Twitch RSA Hypertrophy |           | I       | T                                  |           |           |             |          |             |                                         |         |         |         |  |  |
| Potentiation Clusters       |           | I       |                                    |           |           |             |          |             |                                         |         |         |         |  |  |
| French Contrast             |           |         |                                    |           |           |             |          |             |                                         |         |         |         |  |  |
| Hyperlinks for Examples     | Aerobic   |         | Suprar                             | nax-Eco   | Supran    | nax-Iso     | Por      | wer         |                                         | Spe     | ed      |         |  |  |

| Y                 | ouT     | ub      | e - ]            | Trip      | <u>oha</u> | sic         | Tra       | ini         | ng C      | Cycl      | e D       | ura        | tio        | n H        | lack     | <u>.</u> |           | d         | P        |       |
|-------------------|---------|---------|------------------|-----------|------------|-------------|-----------|-------------|-----------|-----------|-----------|------------|------------|------------|----------|----------|-----------|-----------|----------|-------|
|                   |         |         |                  | j         | Clas       | sic         | Trip      | hasi        | c wit     | h Ful     | I GF      | P M        | odel       |            |          |          |           |           |          |       |
| Phase             |         |         | G                | PP        |            |             | Triphasio | c Strength  | Aerobio   | Triphasic | Strength  | Aerobic    | Triphasio  | Strength   | Aerobic  | Triphasi | c Power   | Aerobic   | Triphasi | ic Sp |
| Weeks             | -1      | 2       | - 3              | 4         | 5          | 6           | 7         | 8           | 9         | 10        | 11        | 12         | 13         | 14         | 15       | 16       | 17        | 18        | 19       | 1     |
| Quality Addressed | Aerobic | Aerobic | Lactate          | Lactate   | Alactic    | Alactic     | Eccentric | Eccentric   | Download  | Isometric | Isometric | Download   | Concentric | Concentric | Download | Power    | Power     | Described | P sking  |       |
| Percent Load      | Belo    | 50%     | 50               | 5N        | Abov       | 80%         | Jov       | re 80%      | Below 50% | Abov      | 80%       | Balau S    | Abov       | e 80%      | Balance  | Belov    | v 80%     | Bulau 50x | Belov    | w 551 |
| Durations         |         |         | over 10          | ec. sets  | under 1    | Sec. SP     | under 1   | O sec. sets |           | under 10  | sec. sets |            | under 10   | HE I       |          | Und II   | sec. sets |           | under 10 | sec   |
| Phase             | T       | iph     | Iasii<br>Triphas |           | m'z'r      |             |           |             |           | SpeedPark | )Cin L    | att 48 wis |            |            |          |          |           |           |          |       |
| Weeks             | 1       | 2       | 3                | 1         | 5          | 6           | 7         | 8           | 9         | 10        |           |            | •          |            |          |          |           |           |          |       |
| Quality Addressed | Aerobic | Aerobic | Eccentric        | Eccentric | Isometric  | Isometric   | Power     | Power       | Peaking   | Peaking   |           |            |            |            |          |          |           |           |          |       |
| Percent Load      | Belo    | w 50%   | Abov             | ve 80%    | Abov       | ve 80%      | Belo      | w 80%       |           | Below     | 55%       |            | 1          |            |          |          |           |           |          |       |
| Durations         |         |         | 20-30            | sec. sets | under 1    | O sec. sets | under 1   | O sec. sets |           | under 10  | sec. sets |            | 1          |            |          |          |           |           |          |       |

### **Most Advanced Method**

- Supra-maximal Loading
- 120 to 100 % + Loading During Eccentric/Isometric
- Most Effective Results in Speed and Reactiveness
- Compressed Training Effect

### RESULTS OF APPLIED INTEGRATION

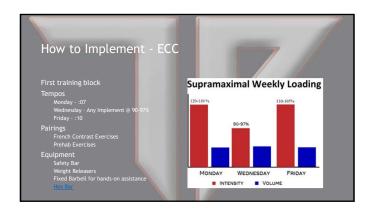
- Week 0: 65-70 Resting heart rate (RHR)
- Weeks 1-3: 55-60 RHR
- Weeks 4-5: 48-52 RHR
- Weeks 6-8: 32-38 RHR Post Super max Isometrics
- All this happened with no conditioning: why?
- Training Block , Breathing , RPR Reflexive performance Reset
- Youtube
- Triphasic Training Bioenergetics Integration Dynamics Method Part 1 AND Workout Structure off Season

### Functional Reserve Range

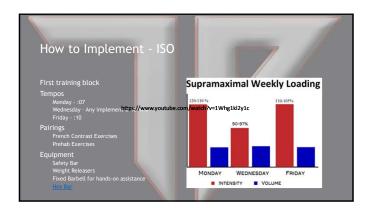
- Twins
- Athlete 1 Resting Heart Rate 65
- LTH 165 FRR 100
- Athlete 2 Resting Heart Rate 32
- LTH 172 FRR 140
- Difference of 40 beats

### What We Have Seen SBSS - Safety Bar Split Squat

- Nervous System


  - Throwers didn't back squat...
     Gained AVERAGE 57lbs on squat in 8 weeks
- Cardiovascular System
  - Week 0: 65-70 resting heart rate (RHR)Weeks 1-3: 55-60 RHR \*GPP\*
  - Weeks 4-5: 48-52 RHR \*ECC\*
  - Weeks 6-7: 32-38 RHR \*ISO\*

Muscular System Female Athlete 132 body weight 355 Safety Bar Squat


Single leg - 800 Pounds

| Why Safety Bar Squat                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower body → Unilateral, total body<br>Global stressor                                          | i de la companya de l |
| Sport-Specific                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Increased stress on individual leg muscles                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| No hands placed on Safety Bar<br>Removes balance from equation<br>Allows for heavier loads used | <b>建</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ↑ Core Stabilization?                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

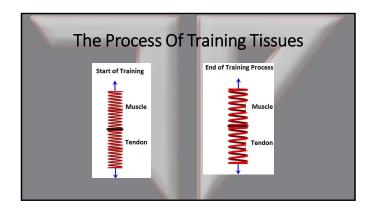
## Why Supramaximal? STRESS SUBmaximal ECC and ISO is not enough Various mechanisms allow body to lower more weight than lift E.g. 120% ECC = 100% CON With this, 90% CON = 70% ECC!!! Not enough! Greater hormone release Must monitor cortisol - sets are under 10 seconds Breaks down NEW tissue first

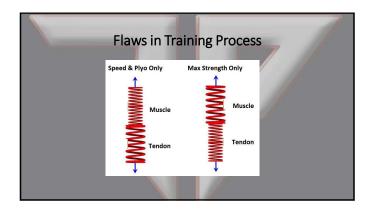


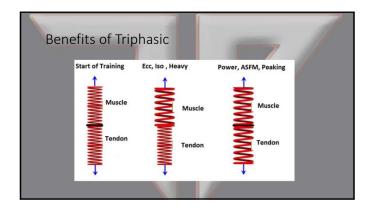







|                    | Weekly Block  | k Loading Mo  | del           |
|--------------------|---------------|---------------|---------------|
| Block Focus        | Monday        | Wednesday     | Friday        |
| Block 1-2 Weeks    | Loading Day 1 | Loading Day 2 | Loading Day 3 |
| Eccentric          | 120-110%      | 90-92%        | 110-105%      |
| Block 2-2<br>Weeks | De-load week  | De-load week  | De-load week  |
| Isometric          | 120-110%      | 90-92%        | 110-105%      |
| Block 3-2<br>Weeks | De-load week  | De-load week  | De-load week  |
| Con- Strength      | 85%           | 90-92%        | 85%           |
| Con- Speed         | 65%           | 80%           | 55%           |


| Concentric SBSS – Has M                                                         | any Options |
|---------------------------------------------------------------------------------|-------------|
| • Above 80% loading                                                             |             |
| • Below 80% loading                                                             |             |
| • 55% - 25% loading – <u>Video</u> • The Reason for <u>Knee in front of toe</u> |             |
|                                                                                 |             |
|                                                                                 |             |


|                            |         |         |         |             |         |             |           |           |           |           |           |           |            |             |           |          |             | 4         | 1        |         |
|----------------------------|---------|---------|---------|-------------|---------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|----------|-------------|-----------|----------|---------|
|                            | P       | eak     | cing    | for         | Spo     | rt -        | Trip      | has       | ic Su     | prai      | max       | imal      | with       | ı GP        | P Mo      | del      |             |           |          |         |
| Phase                      |         |         |         | 3PP         |         | 3           |           |           | Aerobic   |           |           |           |            |             |           |          |             | Aerobic   | Triphasi | ic Spe  |
| Weeks                      | 1       | 2       | 3       | 4           | 5       | 6           | 7         | 8         | 9         | 10        | 11        | 12        | 13         | 14          | 15        | 16       | 17          | 18        | 19       | 20      |
| Quality Addressed          | Aerobic | Aerobic | Lactate | Lactate     | Alactic | Alactic     | Eccentric | Eccentric | Download  | Isometric | Isometric | Download  | Concentric | Concentric  | Download  | Power    | Power       | Download  | Peaking  | Peaking |
| Percent Load               | Below   | w 50%   | 50      | 75%         | Abov    | ve 80%      | 120       | 105%      | Below 50% | 120-      | 105%      | Below Str | Abov       | e 80%       | Balou Str | Belov    | w 80%       | Below Str | Belov    | w 55%   |
| Durations                  |         |         | over 10 | 0 sec. sets | under 1 | 0 sec. sets | 20-30     | sec. sets |           | 20-30     | sec. sets |           | under 1    | D sec. sets |           | under 10 | 0 sec. sets |           | under 10 | ) sec.  |
|                            |         |         |         |             |         |             |           |           | Add Ons   |           |           |           |            |             |           |          |             |           |          |         |
| Fasted State               |         |         |         |             |         |             |           |           |           |           |           |           |            |             |           |          |             |           |          |         |
| Tape Mouth                 |         |         |         |             |         |             |           |           |           |           |           |           |            |             |           |          |             |           |          |         |
| Fast Twitch RSA Capacity   |         |         |         |             |         |             |           |           |           |           |           |           | 100017777  |             |           |          |             |           |          |         |
| ast Twitch RSA Hypertrophy |         |         |         |             |         |             | 777       |           |           |           |           |           |            |             |           |          |             |           |          |         |
| Potentiation Clusters      |         |         |         |             |         |             |           |           |           |           |           |           |            |             |           |          |             |           |          |         |
| French Contrast            |         |         |         |             |         |             |           |           |           |           |           |           |            |             |           |          |             |           |          |         |
| Hyperinks for Examples     | Aen     | obic    | Lac     | ctate       | Ala     | actic       | Supran    | max-Eco   | ex        | Supran    | max-Iso   | Contra.   | Conc       | entric      | Contra.   | Po       | wer         | Contra.   | Spe      | eed     |

### More Speed and Power Examples for Peaking Power Training – 75%-55% Loading Psoas Single Leg Kick Prone Single Leg Band Hamstring Kick Double Leg Band Hamstring Kick Hip Thrust Single Leg OC Banded Abduction Glute Examples for Peaking Speed Training – 50%-25% Loading Psoas Double Leg Kick Prone Double Leg Band Hamstring Kick Hip Thrust Double leg OC

### TENDON STIFFNESS, COLLAGEN PRODUCTION, AND TRIPHASIC FOR PERFORMANCE







# Secret to Hypertrophy of Fast Fiber • Skill is Key – Everything is a Skill • Quality Reps – 3 Reps • Fatigued Prevents Skill Development • Clusters Training 1+1+1+1+1 • Potentiation Clusters

### **French Contrast**

- Safety Single Leg Squat 2 4 reps
- Hurdle hops 4 Reps
- Loaded Squat Jump 4 reps
- Accelerated Jumps 4 reps

### **Potentiation Clusters**

- Simple Contrast Model for high school Acceleration
- Sport Back Squat 1 rep 65-80% + Box Jump / 1 rep...15-20 seconds Rest
- Sport Back Squat 1 rep 65-80% + Box Jump / 1 rep...15-20 seconds Rest
- Sport Back Squat 1 rep 65-80% + Box Jump / 1 rep...15-20 seconds Rest
- Sport Back Squat 1 rep 65-80% +Box Jump / 1 rep
- Rest 2-3 minutes, then repeat for a total of 2 to 4 sets

### **Potentiation Clusters**

- Top end Speed Running
- Hex Dead lift 1 rep 65-80% + Hurdle Hop / 1 rep...15-20 seconds Rest
- Hex Dead lift 1 rep 65-80% + Hurdle Hop / 1 rep...15-20 seconds Rest
- Hex Dead lift 1 rep 65-80% + Hurdle Hop / 1 rep...15-20 seconds Rest
- Hex Dead lift 1 rep 65-80% + Hurdle Hop / 1 rep
- Rest 2-3 minutes, then repeat for a total of 2 to 4 sets

### **Potentiation Clusters**

- Peaking Focus for Team Sports, Basic Approach
- 25-30% Load Squat jump 1 rep + Drop box Jump / 1 rep...15-20 seconds
  Rest
- 25-30% Load Squat jump 1 rep + Drop box Jump /1 rep...15-20 seconds
  Rest
- 25-30% Load Squat jump 1 rep + Drop box Jump / 1 rep...15-20 seconds Rest
- 25-30% Load Squat jump 1 rep +Drop box Jump / 1 rep
- Rest 2-3 minutes, then repeat for a total of 1 to 3 sets

### **Potentiation Clusters**

- Peaking Focus for Team Sports, Advanced Athletes
- 25-30% Load Squat jump/1 rep +Drop box Jump/1 rep +Acc. Band Jump/1 rep...15-20 seconds Rest
- 25-30% Load Squat jump/1 rep + Drop box Jump/1 rep +Acc. Band Jump/1 rep...15-20 seconds Rest
- 25-30% Load Squat jump/1 rep + Drop box Jump/1 rep + Accelerated Band Jump/1 rep
- Rest 2-3 minutes, then repeat for a total of 2 to 4 sets

### What is Lactate Retention Method

It's the Utilization of Lactate for Adaptation purposes prior to optimal Training Preparation Yin/Yang

-When using Lactate Retention Training you're doing the opposite of the normal to Get adaption Results at the Cellular level.

### What is Lactate Retention Method

What is the Normal - After completing a 20 to 120 Set - you flush out the Lactate that has formed.

-Walking or light movement

The Lactate Retention method - you don't move to Keep the Lactate (the Burn) in the muscle. You remain Still.

## Lactate Retention Methods 30 -40 Seconds of Squatting after Lactate Set Deep Relaxed - Rpr Breathing

### What is Lactate Retention Method

What method?

Running - Biking - Stadium Stairs , Squat jumps in place - Leg Press - 300's - Suicides -

Bulgarian Lactate Jumping 3 Sets x 33 Sets - Rest in between is - 110 Heart Rate

### What is Lactate Retention Method

### What Workout - any

- 1) Set 1 -Running a 300 shuttle then Squatting for 30 second
- 2) Set 1 -Running a 300 shuttle then Squatting for 30 second
- 3) Set 1 -Running a 300 shuttle then Squatting for 30 second

### Lactate Retention Methods Oo:54 Oo:54 Oo:54

### **Lactate Retention Methods**

- Henk Kraaijenhof
- Adaptation over Performance
- What Phase/Block Two GPP Triphasic Model
- Base Training last 2 to 3 weeks for Adaptation
- 4 to 6 weeks for Performance

| Adaption Over Performance                                               |  |
|-------------------------------------------------------------------------|--|
| Yin/Yang Performance Adaptation Sequencing                              |  |
| Adaptation Phase 2 - 4 Weeks Performance Phase - 3 to 8 Weeks - not for |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |