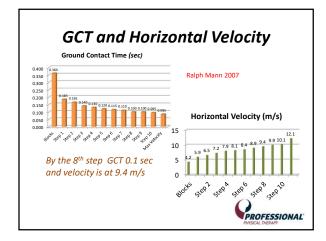
Hamstring Injuries: Rehabilitation and Running Enhancement Training

Hamstring Injury Presentation **Objectives**

- The content of this presentation will include:
 - The Running Gait Cycle
 - Sports Rehabilitation and Strength and Conditioning components
 - ACL Reconstructions utilizing hamstring autografts
 - ACL bracing on hamstring activity – Hamstring injuries

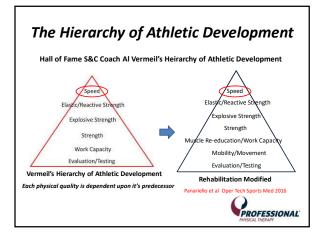

 - Rehabilitation and performance enhancement training options for hamstring injuries

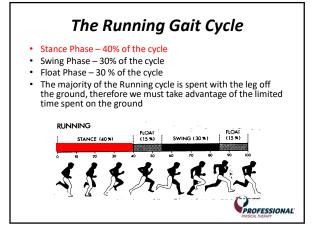
Athletic Performance

- Speed is conferred predominately by an enhanced ability to generate and transmit muscular force to the ground.'
- The fastest athletes spend the least amount of time on the ground (0.7 - 0.9 sec seconds at)sprinting speed
 - The main determinant of achieving maximum sprint speed was in reducing the contact time during the stance phase! Mann 1998

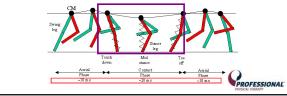
Sir Isaac Newton's Laws of Motion

 The third law of motion states for every action (force) in nature there is an equal and opposite reaction

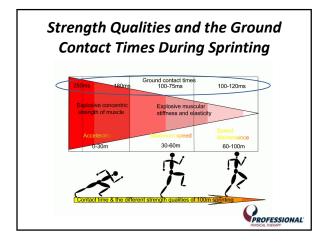



Athletic Performance After ACL and Hamstring Injury

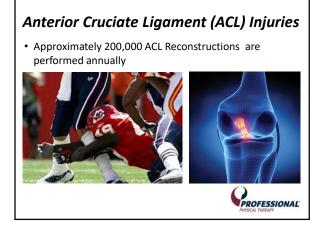
- The athlete needs to reacquire their previous level of physical ability to react to the ground surface area
 - Acceleration
 - Deceleration
 - Change of Direction (COD)

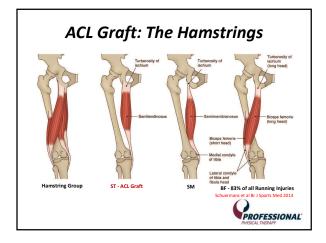

The Running Gait Cycle: Stance Phase

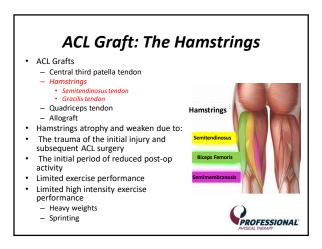
- Most important phase of the running cycle
 - Foot and leg bear weight
 - Application of force into the ground surface area
- Traditionally divided into 3 phases
 - Initial Contact
 - Midstance
 - Propulsion



The Running Stance Phase Initial Contact


- When initial contact is made with the ground (heel) and ends when the forefoot makes contact to begin midstance
 Midstance
- Foot and leg provide a stable support for the body weight to pass over. The opposite extremity is in swing phase
- Propulsion
 - Begins as the heel lifts off the ground to toe off. Ground reaction forces are applied to the ground surface area.

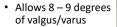




4

ACL Graft: The Hamstrings 14,105 ACL Reconstructions (ACLR) Kaiser Permanente Baldwin, California			
ACL Graft	ACLR Percentage	ACLR Revision (Re-tear) Rate	
Hamstrings	5,707 (40.7%)	3.5% (200)	
Bone-Tendon-Bone	4557 (32.5%)	2.5% (113)	
Allograft	3,751 (26.8%)	3.7% (139)	
American Or	rthopedic Society for	Sports Medicine	

Hamstring Injury: ACL Reconstruction


- Hamstring graft

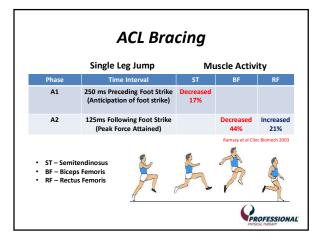
 Semimembranosus
 - Gracilis
- Decreased hamstring strength due to:
 - Harvest of the hamstring graftPost-op inactivity
 - Post-op inactivity
 Low exercise intensity
 Lack of high intensity exercise i.e. sprinting

Hamstring Graft: ACL Bracing

- Fairly rigid cylindrical brace
- Applied over muscle and fatty tissue
- No control of hip motion

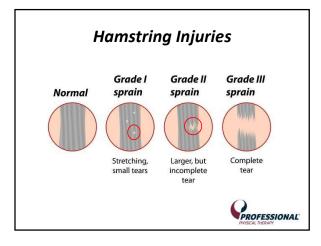
 Allows 5 – 6 degrees of internal rotation

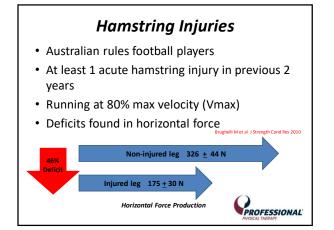
ACL Bracing


- Neural Effect
 - Torn ACL results in lost afferent and efferent (proprioception) sensors
- Bracing
 - Provides extra-articular tactile sense
 - Establishes parallel "control circuits" for tactile sense

ACL Bracing: Knee Sleeve

- Neural Effect
 - Torn ACL results in lost afferent and efferent (proprioception) sensors
- Knee Sleeve
 - Easier and cheaper
 - Provides extra-articular tactile sense
 - Establishes parallel "control circuits" for tactile sense

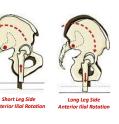



Hamstring injuries

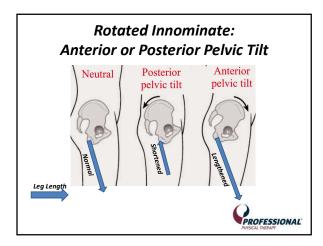
- Injury rate of 12% 16% of all injuries to athletes
- Injury rate of 12% 16% of all injuries to athletes
 Extend et ASM 2011

 Most common injury in male soccer players
 Eliot et al XSM 2011
 Verail et al JS Med Sport 2006
- Re-injury rate reported as high as 22% 34%

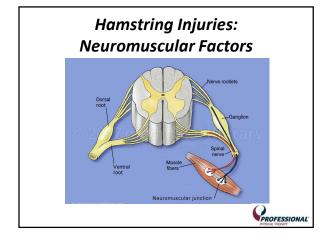
Hamstring Injuries Modifiable and Non-modifiable risk factors Modifiable Rotated innominate Hamstring weakness Orchard et al AJSM 1997 Poor flexibility Poor warm-up Worrell Sports Med 2011 _ Muscular fatigue small et al Int J Sports Med 2009 Poor core stability Sherry JOSPT 2004 Poor lumbar posture Hagglund et al Br J Sports M _ _ Non-modifiable Age Ethnicity History of a previous hamstring injury* *Most consistent risk factor Increase risk reoccurrence 2 – 6 times _ Am J Sports Med 2010 PROFESSIONAL


Rotated Innominate

- Rotated Anterior
- Rotated Posterior


Clinical Pearl: Rotated Innominate

- There is a normal rotation of each innominate (pelvis) during gait (walking) and sprinting
- When an innominate becomes "stuck", and is unable to come out of this position, this limited pattern of movement may become a contributory mechanism for hamstring injury



Hamstrings: Mechanism of Injury

- Terminal swing phase of sprinting Schache et al Med Sci Sports Exer 2012
 - Eccentric contraction of lower limb
 - Absorb kinetic energy and slow the lower limb
- Early stance phase of sprinting
 - Muscles absorb high ground reaction forces
 - Higher forces in the concentric stance phase
 - Komi J Biomechanics 1990

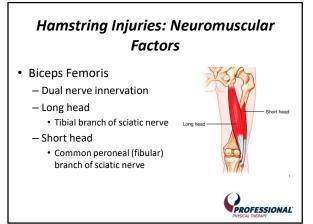
Hamstring Injuries: Neuromuscular Factors

- Maximum length of hamstring muscles noted at late swing phase of sprinting
- $\displaystyle \underline{Biceps \ Femoris} \ (BF)$ Peak musculotendon length is synchronous with peak EMG activation
- <u>Semitendinosus (ST) Muscle</u> Peak musculotendon length occurs significantly later than peak level EMG activation
- These results suggest that the BF muscle is exposed to an instantaneous high tensile force during the late swing phase of sprinting, indicating a higher risk of muscle strain injury Headwhare at a fur 1 sport 53 2016 follow through forward swing foot descend

- Hamstring muscle activation occurring at different running speeds of maximum velocity
 Running speed of 85% to 95% max
- velocity
 Increased activation of hamstring
- muscles during late swing
 No change in lower extremity kinematics
- International stress
 95% max running velocity
 - Significant different peak muscle activation time in BF vs. ST
 - P <0.05 stance phase
- P<0.01 swing phase
 Complex neuromuscular coordination patterns occur at maximal running velocities

Hamstring Injuries: Neuromuscular Factors

- ST and BF engage in maximal eccentric activation throughout the swing phase
 These synergists work alternatingly (asymmetrical) in complex
- These synergists work alternatingly (asymmetrical) in complex neuromuscular coordination
- Biceps Femoris
- Predominate activity is middle to late swing
 Semitendinosus
- Predominate activity is terminal swingInjured Hamstrings
 - More symmetrical muscle recruitment pattern
 - Compensatory recruitment pattern
 - Less economic hamstring activation
 Lower strength endurance capacity
 - Lower strength endurance capacity
 May increase the risk of re-injury Schuermans et al Br J sports Med 2014



Hamstring Activation: Acceleration vs.

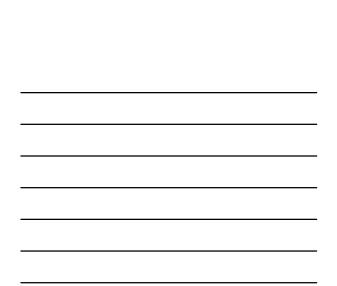
Maximum Speed Phases

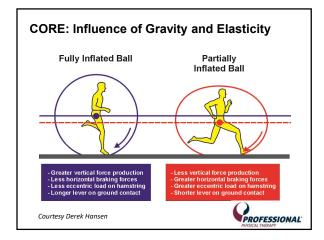
- Early stance acceleration phase
 - Hip extension torque is greater vs. max speed
 EMG of BF (long head) greater than ST muscle
- Late stance and terminal mid-swing of max speed
 - Higher knee flexor moment and with greater extension vs. acceleration phase
 - EMG of ST great than BF long head
- Functional demands of medial and lateral hamstring differ at different phases of sprinting Highthara et al sports Sci 2018

Hamstring Neuromuscular Factors After ACL Reconstruction

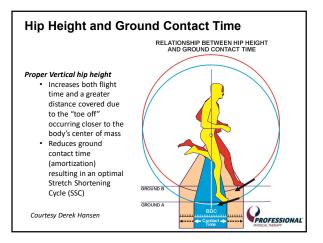
- Hamstring activation and strength are important for:
 - Maintenance of appropriate tibiofemoral alignment
 - Prevention of excessive anterior tibial translation
- Athletes 1 6 years post ACLR have inter-limb activation differences in hamstring firing time compared to a healthy control cohort

Restoration of Hamstring Neuromuscular Contributions

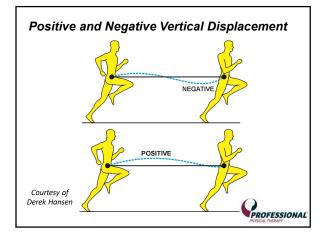

- Optimal restoration of the physical qualities
- Restoration of neuromuscular control and timing
- Progressive training program of sprinting velocities

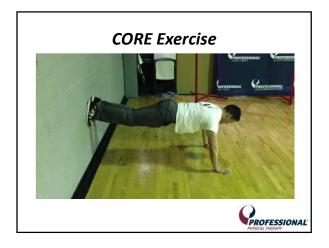


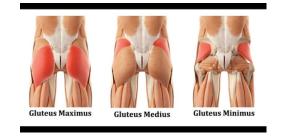
Hamstring Injuries: The Physical Quality of Strength

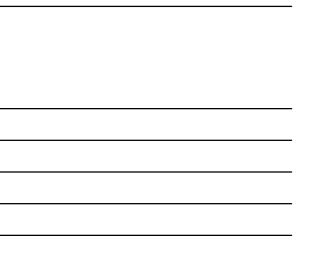

> Elastic/Reactive Strength Explosive Strength Strength Work Capacity Evaluation/Testing Vermell's Hierarchy of Athletic Develop

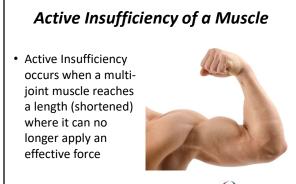
Strength
 CORE
 Hip musculature
 Lower extremity musculature



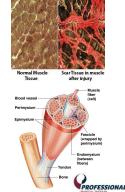


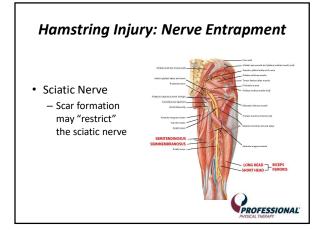


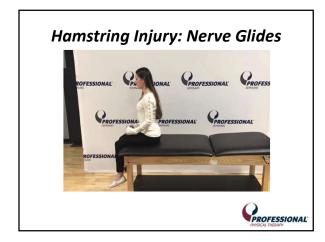



Hip (Gluteal) Strength

- Propulsion
- Deceleration
- Change of Direction (COD)


Fortune of Calubacal Strength Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"





Hamstring Injury

- Tearing of soft tissue
 Grade I, II, or III
- ST Hamstring ACL graftHealing occurs via
- muscle scaring
- Shortening of the muscle fascicles
- 10 to 100 muscle fibers in a fascicle

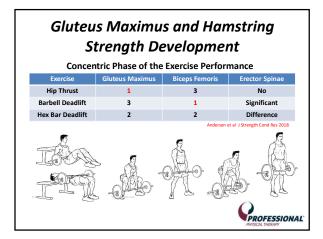
Hamstring Force Production

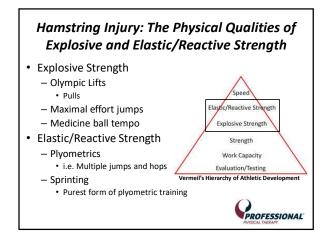
- Peak hamstring torque occurs at significantly shorter muscle lengths in injured hamstrings
- Potential weakness at longer (previous) muscle lengths
- Eccentric training in the lengthened state may shift the torque curve at the end ROM schmitt et al int J Sports Phys Ther 2012

Hamstring Injury: Strength Training

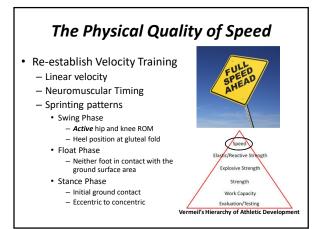
- Strengthen muscle fibers
- Strengthen at a lengthened muscle fascicles/fiber position
 - Terminal knee/hamstring muscle lengths
- Romanian Deadlift (RDL's)Nordic hamstring exercises

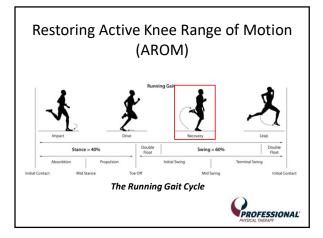
Nordic hamstring exercise does not achieve terminal length strengthening





Hamstring Strengthening: Kettlebell Swings				
Swing Type	Portion of ROM	Medial Hamstring % EMG	Biceps Femoris % EMG	MH vs. BF % EMG
Hip Hinge	Concentric	44.89 <u>+</u> 25.02	32.65 <u>+</u> 14.47	12.24 <u>+</u> 10.55
	Eccentric	28.80 <u>+</u> 16.36	21.51 <u>+</u> 15.04	7.29 <u>+</u> 1.32
 Hip Hinge Kettlebell Swing Medial Hamstrings are used as an ACL graft May be initiated early in the rehab process MH strength and power Initiate deceleration abilities Eccentric muscle contraction 			2	





Elastic/Reactive Qualities of Sprinting

- 4.6 Second 40 Yard Dash
- Sprinting Velocity of approximately 9-10 m/s
- Initial speeds up to 7 m/s requires more "strength" qualities
- Speed exceeding 7 m/s requires "elastic strength" qualities Cavagna J Physio 1971



Knee AROM - The Swing Phase

• Moment arms (distance) of heel to butt

The Running Gait Cycle

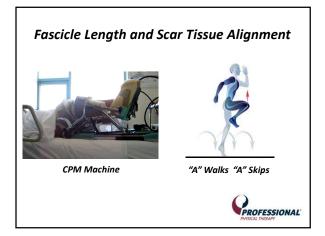
The Running Gait Cycle is just that, a "Cycle". If you negatively affect one phase of the cycle, you negatively affect the entire cycle.

Poor Stance Phase Poor Swing Phase Poor Left Lower Extremity Poor Right Lower Extremity

Velocity Training - Modified Running Progressions and Mach Drills

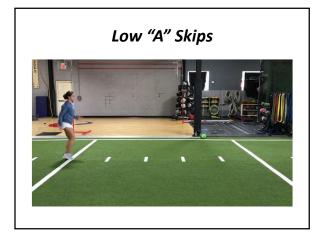
- "A", "B", and "C" running drill series developed by track & field coach Gerard Mach
- Clinical Progression
 - "A" walks/marches
 - "A" skips low
 - "A" skips (high)
 - "A" runs
- Running
 - 10 yard sprints

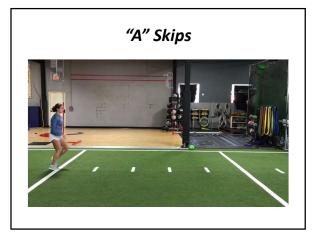
Modified Mach Drills			
Poor Strength Qualities	Fair/Good Strength Qualities	Good/Excellent Strength Qualities	
Marching/Walking "A"'s	"A" Skips partial/full ROM	Running A's perfect technique	
Mirror Drills	Running "A"'s partial/full ROM	Bounding	
Seated arm action activities		Sprinting	


- Velocity Progression
 - Modified Mach Drills
 - Mach Drills
 - "A" Series
 - 10 Yard Sprints

"A" Marches/Walks

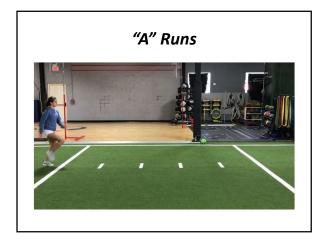
- Simple means of controlling running limb mechanics in a slow disciplined fashion
- Fascicle length and proper alignment of scar tissue
- A rehearsal of the vertical qualities of stepping from stride to stride
- Coordinate arm movements to match the front side characteristics of the legs
- Teaches swing leg to a maximum height to the level of the hip
- Instills foot decent in a vertical movement pattern (vs. horizontal) with ground placement a few inches anterior to the support leg
- Vertical limb patterns assist in teaching the prevention of over striding
- The exercise should initially be performed walking heel to (rehabilitation) and progressed onto the balls of the feet with the heels slightly off the ground





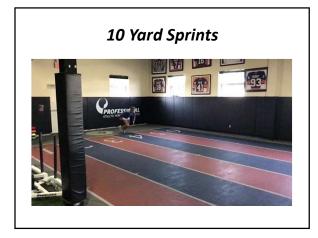
Low "A" Skips and "A" Skips

- Bridges the gap from "A" Marches/Walks to "A" Runs
- Low "A" Skips are a rehabilitation progression
- Performed with the same posture and limb paths as "A" Marches/Walks
- Adds limb velocity, vertical force production, and elastic components vs. the "A" March/Walk exercise
- Acceleration of the foot downward to the ground evokes:
 - Stretch reflexes of the foot and lower leg
 - Vertical displacement of the body
- Perform light and quick foot contacts
 VEROFESSIONAL
 NYSCL THEMAY



"A" Runs

- Cyclical stimulation of actual sprinting
- Preparation for stride frequency and vertical force production
- "Step over" cueing (are related to stance limb) progression:
 - Ankle
 - Calf
 - Knee
- Goal is 30 strides over 10 yards
- Metabolic requirements of sprinters



10 Yard Sprint

Clinical Pearl: Sprinting Volumes

- Sprint Acceleration in a fatigued environment: ٠
- Decrease in:

- phases:
 - Knee flexors
- Gluteal maximusVastus lateralis
- Increased Swing and GC times Edouard et al Frontiers 2018 Evans et al J Phys Ther Sports Med 2018

